Distribuição de Cr³⁺ em Interfaces Minerais: Complementaridade da Fluorescência de Raios-X e Microscopia de Fluorescência Confocal

Natália A. Bueno¹ (IC), Gizelle I. Almerindo¹ (PQ), Suelen C. Buratto¹ (PG), Rene A. Nome^{2*} (PQ), Nádia Hoffman² (IC), Ânika Gaborim² (IC), Valderez Ferreira³ (PQ), Haidi D. Fiedler¹** (PQ), Faruk Nome¹ (PQ)

¹ INCT-Catálise, Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brasil

² INCT-Catálise, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, Brasil

³ Departamento de Geologia, Universidade Federal de Pernambuco (UFPE), Recife, Brasil

* nome@iqm.unicamp.br, * * haidi.fiedler@ufsc.br;

Palavras Chave: Fluorescência de Raios-X, Microscopia de Fluorescência Confocal, Cromo, Areia Tratada.

Introdução

Um estudo recente sobre a adsorção de Cr³⁺ em sílica-gel¹ revelou que este íon esta distribuído espacialmente em toda a partícula, e não somente em sua superfície (Figura 1).

Figura 1. Análise da distribuição de Cr³⁺ em sílica-gel, por Microscopia de Fluorescência Confocal, utilizando piranina como sonda fluorescente.

No presente trabalho descreve-se a interação de Cr³⁺ com areia tratada (sílica *in natura*)² e sílica-gel empregando-se comparativamente as técnicas de Espectrometria de Fluorescência de Raios-X (XRFS) e Microscopia de Fluorescência Confocal.

Resultados e Discussão

A área superficial da areia tratada foi de 0,228 m²g⁻¹ e devido a este baixo valor optou-se pela adição de cromo através de mistura mecânica em moinho (mistura sólida) bem como de impregnação úmida, respectivamente. As amostras foram enriquecidas com Cr^{3+} para a obtenção de 2 e 7% de Cr_2O_3 (em massa) após calcinação (600 °C, 4 h).

A Figura 2 apresenta duas amostras de areia tratada preparadas em forma de pastilhas e de pérolas para análise no equipamento de XRFS e posteriores testes aplicativos.

Figura 2. Fotografia de 02 amostras em forma de pastilhas (parte de cima) e 02 pérolas (abaixo). À esquerda teor de 2% de Cr^{3+} e à direita teor de 7%.

A **Figura 3** mostra o espectro XRFS da areia tratada (radiação UV), moída e logo, peneirada para separar partículas com tamanhos menores que 63 micrometros.

A areia analisada é proveniente das dunas da Praia da Joaquina (Florianópolis, Santa Catarina, Brasil) e contém uma quantidade de 2% de Cr³⁺ adicionado.

Figura 3. Espectro XRFS da areia da Praia da Joaquina, em forma de pérola, em diferentes condições de tensão e filtros.

A tabela 1 apresenta a composição da pérola apresentada no espectro anterior (elementos majoritários e minoritários) obtida por XRFS. Com exepção dos resultados calculados para o elemento Cl, todos os outros elementos são expressos na forma dos óxidos mais estáveis.

Tabela 1. Composição da areia determinada porXRFS, em amostras na forma de perola.

Componentes	SiO ₂	Al ₂ O ₃	CI	Cr ₂ O ₃
(%)	91,73	3,26	1,88	1,73
Componentes	K₂O	Fe ₂ O ₃	TiO ₂	ZrO ₂
(%)	0,85	0,32	0,16	0,04

Conclusões

As amostras de areia e de sílica-gel conseguem ser enriquecidas, de forma homogênea, quando a espécie Cr^{3+} é adicionada na forma de óxido e a Fluorescência Confocal mostra que o Cr^{3+} está distribuído homogeneamente na partícula.

Agradecimentos

CNPq, FAPESC, CAPES.

¹ Idrees, M.; et al. J. Phys. Chem. C. **2012**, 116, 3517.

² Nome, R. A.; et al. *Envirom. Toxicol. Chem.* **2010**, *29*, 2426.

³ Fiedler, H. D.; et al. *Talanta*. **1999**, 48, 403.