Degradação de fenol em solos condicionados com matriz fertilizante contendo subprodutos sólidos da industrialização do xisto

Luis Fernando A. Batista¹ (IC)*, Rafael G. Dolatto¹ (PG), Betânia F. Pereira² (PQ), Carlos A. P. Silveira³ (PQ) e lara Messerschmidt¹ (PQ). <u>luisquimicaufpr@yahoo.com.br</u>*

¹Depto. de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba – PR; ²FAPEG/EMBRAPA Clima Temperado, BR 392, km78, CP 403, 96001-970, Pelotas – RS; ³EMBRAPA Clima Temperado, BR 392, km78, CP 403, 96001-970, Pelotas – RS.

Palavras Chave: fenol; subprodutos do xisto; solo.

Introdução

Compostos fenólicos sintéticos geralmente estão presentes em águas residuais de indústrias de carvão, petroquímica e em óleos de refinaria¹. Em concentrações específicas podem ser prejudicais a humana, sendo ainda considerados poluentes prioritários na lista da USEPA2. Em vista disso e da possível contaminação de solos e águas subterrâneas, decorrente do destino inadequado desses rejeitos aquosos, este trabalho avaliou a degradação de fenol em dois tipos de solo: Argissolo Vermelho Distrófico (SM) e Planossolo Háplico Distrófico (ETB), ambos condicionados com matriz fertilizante contendo subprodutos sólidos da industrialização do xisto.

Resultados e Discussão

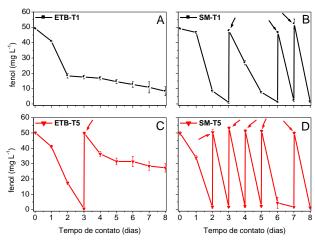

Foram utilizadas amostras de solos testemunha ETB-T1 e SM-T1, sem adição da matriz fertilizante, e amostras de solos, SM-T5 e ETB-T5, que receberam o tratamento (T5), que consistiu na aplicação de 30 mg kg⁻¹ de Superfosfato Triplo + 62,5 mg kg⁻¹ da matriz fertilizante composta por subprodutos da industrialização do xisto. Inicialmente os solos avaliados tiveram seus parâmetros agronômicos determinados (Tabela 1).

Tabela 1. Dados agronômicos dos solos ETB e SM.

Solo	рΗ	С	CTC	Areia	Silte	Argila
ETB-T1	4,7	9,6	6,2	650,5	149,5	200,0
ETB-T5	4,2	12,4	6,4	643,0	182,0	175,0
SM-T1	4,7	31,8	16,6	25,0	275,0	700,0
SM-T5	4,5	43,3	18,0	29,5	270,5	700,0

pH: medido em meio de CaCl₂ 0,01 mol L⁻¹; Carbono Orgânico (C: g dm⁻³), Capacidade de Troca Catiônica (CTC: cmol dm⁻³), teores de areia, silte e argila (g kg⁻¹ de solo); n=3 e desvios padrão não maiores que 5%.

Conforme Tabela 1, constatou-se que o solo SM apresenta maiores teores carbono orgânico, CTC e argila, em comparação ao solo ETB. Estudos de degradação do fenol nestes solos³ foram conduzidos utilizando 5,0 g (± 0,0001 g) de solo em 150,0 mL de solução contendo fenol em concentração de 50,0 mg L⁻¹. Durante oito dias a concentração de fenol foi monitorada nas suspensões, via método espectrofotométrico na região do UV (270 nm). Os resultados são mostrados na Figura 1.

Figura 1. Curvas de degradação do fenol nos solos: Fenol 50,0 mg L⁻¹ em meio de CaCl₂ 0,01 mol L⁻¹; Fortificações de fenol indicadas por setas; massa de solo = 5,0000 g; volume inicial = 150,0 mL; agitação constante de 150 rpm, T = 25,0 \pm 0,2 °C; LQ = 1,0 mg L⁻¹ e n = 3.

Conforme Figura 1 observa-se que na amostra SM-T1 (testemunha) a degradação é favorecida devido aos maiores teores de C, CTC e argila. Por outro lado, a adição da matriz fertilizante, aos dois solos, propiciou aumento na capacidade e na velocidade da degradação do fenol. Infere-se que o incremento de matéria orgânica presente nos subprodutos de xisto, em conjunto ao fosfato e enxofre, adicionados aos solos, atuam em sinergismo viabilizando maior desenvolvimento de consórcios de microrganismos que devem usar o fenol como fonte de carbono.

Conclusões

Foi constatada rápida degradação de fenol nos solos, sendo que a aplicação da matriz fertilizante aumenta a velocidade e a capacidade da degradação do fenol. Estudos futuros serão relevantes para a identificação dos microrganismos envolvidos na degradação do fenol.

Agradecimentos

Ao convênio Embrapa Clima Temperado/FAPEG (RS) e Petrobrás e ao Depto. de Química – UFPR.

¹ Jiazhen, Z.; Wuhua, D.; Jinquan, X. e Yiyan, Y. Chin. J. Chem. Eng. **2007**, 15, 209 – 214.

² Dong, X.; Hong, Q.; He, L. Jiang, X. e Li, S. International Biotererioration & Biodegradation. **2008**, 62, 257 – 262.

³ Dolatto, R. G.; Messerschmdt, I.; Pereira, B. F.; Oliveira, T. de.; Pillon, C. N. e Abate G. J. Agric. Food Chem. **2010**, 58, 2426 – 2432.