Avaliação de catalisadores Cu-Ni/Nb₂O₅ preparados por diferentes formas de impregnação dos metais.

Monique Anne Martins Figueira¹ (IC), Eduardo Lima Evencio de Carvalho² (IC), Cássio Morilla dos Santos³ (PQ), Roberta C. P. Rizzo-Domingues¹* (PQ).

1 Universidade Tecnológica Federal do Paraná, Curitiba – PR, 2 Universidade Federanol do Paraná, Curitiba – PR, 3 LACTEC – Instituto Tecnológico para o Desenvolvimento, Curitiba – PR.

Palavras Chave: Reforma a vapor de etanol, produção de hidrogênio, catalisadores Cu-Ni/Nb₂O₅.

Introdução

Energia elétrica gerada a partir de células a combustível com o uso de hidrogênio é, sem dúvida, uma das fontes de energia limpa com um dos maiores potenciais existentes atualmente. O grande desafio desta tecnologia é a produção de hidrogênio de maneira mais pura possível. O processo de reforma a vapor do etanol apresenta vantagens no que diz respeito a grande disponibilidade em termos nacionais, a não toxicidade e principalmente por ser renovável. Catalisadores a base de cobre e o níquel são promissores para serem utilizados nesta sendo que suas interações podem reação. influenciar na atividade catalítica, cujos estudos demonstraram que a ordem da impregnação dos metais também causa influência no desempenho da reação¹. Outros estudos inferem que catalisadores com Nb₂O₅ apresentam satisfatória atividade na reforma do etanol². Desta maneira, foi estudada a reação de reforma a vapor de etanol utilizando catalisadores Cu-Ni suportados em Nb₂O₅, para isso foram preparados quatro catalisadores contendo cobre e/ou níquel suportados em pentóxido de nióbio com diferentes maneiras de impregnação dos metais: Após o tratamento do suporte Nb₂O₅, partiuse para a síntese catalítica, onde foram preparados 20 g de cada um dos quatro catalisadores diferentes, dois com a mesma composição bimetálica (Cu-Ni), somente variando a ordem de impregnação, e os outros dois monometálicos. Os catalisadores sintetizados foram caracterizados por área superficial específica (BET) e redução a temperatura programada (RTP). A reação de reforma de etanol sucedeu-se com todos os catalisadores empregando amostra de 3,5 g, em unidade de bancada com leito catalítico operando a 573K.

Resultados e Discussão

A análise da área superficial específica mostrou que todos os catalisadores são porosos, mas sem a presença de microporos (Tabela 1), sendo o catalisador Ni/Nb $_2$ O $_5$ o que apresentou maior área superficial específica. A análise de RTP apresentou resultados condizentes com a influência que a ordem de impregnação exerce. Em relação aos testes catalíticos realizados houve produção de H $_2$

com alta seletividade para todos os catalisadores, no entanto houve a formação de subprodutos gasosos, como CH4, CO, etano e principalmente etileno. Detectou-se baixa concentração de acetaldeído e éter dietílico nas amostras de produtos líquidos para todos os catalisadores. A conversão foi mais baixa no caso dos catalisadores monometálicos, ficando quase sempre abaixo de 50% nesses dois casos. O catalisador em que a primeira impregnação foi de Cu seguida da de Ni (Ni-Cu/Nb $_2$ O $_5$) apresentou o melhor desempenho entre todos, já que formação de subprodutos gasosos foi pequena com o decorrer da reação, e também, apresentou uma conversão que se manteve entre 40 e 80% ao longo do teste catalítico.

Tabela 1. Análise textural pela técnica de adsorção e dessorção de N_2 dos catalisadores

Amostras	S _g (m²/g)
Ni-Cu/Nb ₂ O ₅	48,76
Cu-Ni/Nb ₂ O ₅	50,13
Cu/Nb ₂ O ₅	47,94
Ni/Nb ₂ O ₅	59,74

^{*} S_g = área superficial específica (m²/g).

Conclusões

Os resultados mostraram que catalisadores a base de Cu-Ni suportados em nióbia são promissores para serem utilizados na reação de reforma de etanol.

Agradecimentos

Os autores agradecem ao CNPq, e ao LACTEC, pelo apoio financeiro e de infraestrutura para a elaboração deste projeto de pesquisa e desenvolvimento.

¹Maia, T. A., Bellido, J. D. A., Assaf, E. M., Assaf, J. M., Química Nova, 30:339–45, 2007.

² Alonso, C. G., Furtado, A. C., Cantão, M. P., Santos, O. A. A., Fernandes-Machado, N. R. C., International Journal of Hydrogen Energy, 34, 2009.