Avaliação da composição química e da temperatura de fusão das cinzas do carvão do sul catarinense: Camadas Bonito e Barro Branco

Jair Juarez João (PQ), Roseli de Freitas Felipi (IC)*. roseli_ff@hotmail.com

Universidade do Sul de Santa Catarina. Av. José Acácio Moreira 787. Bairro Dehon. CEP 88704-900. Tubarão/SC. Palavras Chave: Composição química, carvão mineral, temperatura de fusão

Introdução

Considerando a intensa utilização do carvão no setor siderúrgico e energético, é importante conhecer a matéria inorgânica do carvão e o seu respectivo comportamento em temperaturas elevadas. Durante a combustão, a matéria inorgânica do carvão se transforma em cinzas que podem se depositar sobre as superfícies de transferência de calor nos sistemas de combustão das caldeiras termelétricas, reduzindo a eficiência da transferência de calor¹. As cinzas remanescentes da combustão do carvão consistem de uma mistura complexa de fases cristalinas e amorfas sem um ponto de fusão definido. Essa parcela inorgânica do carvão se caracteriza por agregar em sua composição uma grande diversidade de óxidos, entre eles SiO_2 , Al_2O_3 , Mn_2O Fe_2O_3 , CaO, K_2O e Na_2O . A MgO,TiO₂, previsão comportamento de fusibilidade das cinzas a partir da composição química é considerada importante. O presente estudo busca fazer uma avaliação da composição química e da temperatura de fusão das cinzas do carvão mineral do sul catarinense, camadas Bonito e Barro Branco, usados na Tractebel Energia - Complexo Jorge Lacerda.

Resultados e Discussão

Para a realização deste trabalho foram coletadas 20 amostras de carvão, que foram submetidas a queima para a geração de cinzas. A amostragem do material foi realizada segundo a metodologia de quarteamento. Após esta etapa foi realizada a moagem do carvão para obtenção das cinzas com granulometria uniforme, próximo a 200 mesh Tyler. Em seguida, realizou-se a combustão completa na temperatura de 850 °C, com isoterma de 4 horas, em forno do tipo mufla. As análises químicas foram realizadas segundo a técnica de absorção atômica de forno de grafite, após digestão da amostra em microondas em meio ácido (AOAC, 1997). O equipamento utilizado neste estudo foi um Espectrofotômetro de Absorção Atômica com Forno de Grafite (ETAAS), modelo ZEEMAN 220 (Varian). Para realização das análises foram pesados 0,300 g de amostra, no frasco de um bloco digestor para microondas e adicionado 2 mL de HF (ácido fluorídrico), 3 mL de HNO₃ (ácido nítrico) e 2 mL de HCI (ácido clorídrico) concentrados. O frasco foi fechado e colocado no microondas por 4 minutos. A solução digerida foi filtrada e avolumada para 250 mL. Foram analisados os seguintes óxidos: silício, alumínio, ferro, cálcio, potássio, enxofre, sódio, titânio e magnésio. Para cada amostra de cinza foi determinado à temperatura de fusão utilizando um microscópio de aquecimento (Hesse Instruments).

Tabela 1 – Média dos resultados obtidos para a composição química das cinzas de 20 amostras de carvões das camadas Barro Branco e Bonito.

% de óxidos nas	Camada	Camada Barro
amostra	Bonito	Branco
SiO ₂	61,3	70,09
Al_2O_3	15,47	15,95
Fe ₂ O ₃	4,82	4,74
K ₂ O	3,91	3,82
SO_3	2,47	2,76
CaO	1,84	1,16
Na ₂ O	1,21	0,92
TiO ₂	0,69	0,87
MaO	0.45	0.42

Através dos resultados verifica-se que os óxidos majoritários são os de silício, alumínio e de ferro. O óxido de silício é altamente preponderante frente aos outros elementos (óxidos), com teor médio de 61,3% para camada bonito e 70,09% para camada barro branco. O óxido de alumínio apresenta-se como o segundo maior componente. Para a camada bonito, os valores médios obtidos foram 15,47% e para camada barro branco 15,95%. Entre os compostos minoritários estão os óxidos de cálcio e magnésio. Os resultados obtidos para fusibilidades das cinzas dos carvões, para as duas das camadas, permitem determinar as temperaturas referentes aos principais estágios de amolecimento e fusão, que também estão vinculados às propriedades de fluidez das amostras. Os valores médios da temperatura de fluidez para os carvões analisado da camada barro branco ficou acima de 1600°C, característico de amostras de cinzas que apresentam concentrações mediana de sílica, alumínio e ferro. Os valores médios da temperatura de fluidez para os carvões analisado da camada bonito ficou abaixo de 1500°C, característico de cinzas com baixos teores de sílica (50-60%).

Conclusões

A partir dos resultados é possível concluir que a aplicação de técnica que correlaciona à composição química das cinzas com a temperatura de fusão (fluidez), pode caracterizar os tipos de minerais que formam o carvão. Verifica-se também que os óxidos majoritários são os de silício, alumínio e de ferro.

Agradecimentos

UNISUL E TRACTEBEL ENERGIA

1.GUPTA, S.K.; WALL, T.F.; CREELMAN, R.A.; GUPTA, R.P. Ash fusion temperatures and the transformations of coal ash particles to slag. *Fuel Processing Technology*, v. 56, n.1-2, p. 33–43, 1998